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Some fundamental law of nature governs the position of the

faces of a crystal and limits in number the faces which occur on the

crystals of any one substance. Crystal faces are designated by

intercepts on coordinate axes, which are chosen so as to yield simple

relations. Now it is found that the intercepts of the various crystal

faces of a given substance, on each coordinate axis taken separately,

Fig. 1. The coordinate axes of a crystal.

usually bear a simple ratio to each other such as 1 :oc
, 1 : 2, 1 : 3, 2 : 3,

3 : 1, etc. A selected face chosen because of its prominence is taken as

a standard and the other faces are expressed in terms of it. The

selected face is called the unit face, as its intercepts on the three

axes establish a unit which, in general, is different for each axis, as

represented in Fig. 1. The intercepts of the unit face which are, in
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general, irrational constitute the axial ratios which are constants for

each crystallized substance. For convenience in calculation the re-

ciprocal ratios of the intercepts are used. These reciprocals are

called indices or Miller indices, as Miller, an English crystallogra-

pher, was the first to make extensive use of this method. The indices

are usually simple numbers such as (no), (210), (130), (211),

(321), (441), etc., the unit face being (in).

If we examine the statements concerning the rationality of the

indices of crystal faces in text-books and treatises we find a differ-

ence of opinion as to the exact definition of the law. Some authors

insist that the indices are small whole numbers, while others simply

state the fact that the indices are whole numbers, usually, but not

necessarily small. One crystallographer, Viola, 1 goes so far as to

doubt the validity of the law of rational indices. Another investi-

gator, G. H. F. Smith, 2 believes that the law of simple rational indices

is valid except in one particular instance, that of calaverite from

Cripple Creek, Colorado. But, as he shows, by assuming several

interpenetrant space-lattices it may be valid even in this case.

Thus there are three possibilities to consider : ( 1
) The indices

are always small rational numbers. (2) The indices are rational

numbers, but not necessarily small. (3) The indices are not always

rational and the law has no meaning. This subject is such a funda-

mental one in both theoretical and practical crystallography that it

seems advisable to enquire into the history and status of the law.

Such is the object of this paper.

The credit of the discovery of the rationality of the indices is due

to Haiiy, 3 professor of the humanities in the University of Paris,

who developed it from his theory of crystal structure based upon

cleavage observations. Hauy believed that crystals are composed of

minute cleavage fragments which he called molecules intcgrantes.

Primary faces, according to his view, are due to the association of

the molecules in parallel position, while secondary faces are due to

the omission of molecules on the exterior of the crystal in step-like

1
Zeitschrift fur Krystallographie und Mineralogie, Vol. 34, pp. 353-388

(1901).
2 Mineralogical Magazine, Vol. 13, p. 122 (1902).
3 "Essai d'une Theorie sur la Structure des Crystaux." Paris, 1784.
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arrangement. According to Haity the omission is usually of one,

two or three, rarely of four or five rows of molecules. Fig. 2 shows

the production of an (no) face in this manner. If the cubes were

very minute the (no) face would appear to be smooth. This

epoch-making discovery laid the foundation of crystallography as an

exact science and entitles Haiiy to the title " father of crystal-

lography." With some modification it has been the guiding prin-

ciple in crystallography since that time and should not be abandoned

unless the evidence is clearly against it.
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with indices at all complex as doubtful even when the measurements

indicate the form. 6

The lazv of simple mathematical ratio is untenable. There are

List of Crystal Faces with Complex Indices.
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These are selected because of the good agreement between the

measured and calculated angles. Outside of its position in certain

zones the only proof of a face lies in this agreement. Ordinarily an

agreement as close as ten to thirty minutes of arc is sufficient to

establish a face. For the common form-rich minerals, such as

orthoclase. tourmaline, rluorite, magnetite, pyrite, barite, anglesite,

calcite, aragonite, cerussite, stibnite, hematite, etc., it is certain that

some of the faces have complex indices. To be convinced of this

fact let one look over the list of forms of the above mentioned min-

erals in Goldschmidt's " Krystallographische YVinkeltabellen." 7 For

calcite one half of the forms (162 out of 325) have indices greater

than 10. The law of simple mathematical ratio is hardly compatible

with this fact.

Many crystals have what are called vicinal faces. These are

faces with very high indices which replace faces with very simple

indices. Thus apparent cubic crystals of fluorite from the north of

England are in reality bounded by faces of a tetrahexahedron with

the symbol (32-1-0). Here each cube face is replaced by a very low

four- faced pyramid. Vicinal faces are often regarded as accidental

or in some way irregular and are usually excluded from the law of

rational indices as they are of course inconsistent with the law of

simple mathematical ratio. As they lie in prominent zones and as

their arrangement conforms to the symmetry of the crystal on which

they occur, they can hardly be excluded from the list of faces, though

their origin is not clearly understood. The only possible argument

for excluding them is that the exact indices of such faces can not

always be determined, for the agreement between measured and cal-

culated angles must be exceptionally good to establish the face.

Miers s found that on alum very flat trisoctahedral faces replace the

octahedral faces. In one case the measurements indicated the sym-

bol (251-251-250). As Miers says, this form can not be regarded

as established. It may be some other form with a little different

T For recent additions to these lists see Whitlock, School of Mines Quar-

terly, Vol. 31, p. 320; Vol. 32, p. 51 (1910).
* Philosophical Transactions of the Royal Society, A, Vol. 202, pp. 459-

523 (1903)-
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symbol. But according to Miers 9 these vicinal faces on alum prob-

ably have rational indices.

If we decide to exclude vicinal faces where shall we draw the

line? In the zone of (hko) faces, for example, we have a large

series of possible faces. (32-1-0) is undoubtedly vicinal and so

perhaps are (25-1-0) and (20-1-0). The faces (12-1-0) and

(io-i-o) are probably not vicinal, but what of the intermediate faces?

Such faces as (12-9-1), (3-5-11) and (11-4-7) can hardly be con-

sidered as vicinal, yet they are comparatively complex. There is no

exact definition of a vicinal face. As a matter of fact there are all

gradations between very simple indices and very complex ones, the

limit in complexity apparently being determined by the limits of

measurement. There seems to be proof of indices at least as high

as 50 (see in the tabulated list apophyllite, danburite and calcite of

forms on page 106).

Finding that the indices of crystal faces are often very large

numbers a few authors, notably Viola, 10 express the opinion that the

law of rational indices has no meaning. For of course if we take

the indices large enough any plane can be expressed by whole num-

bers. It is manifestly impossible to prove by direct measurement

that the indices of all crystal faces are rational, for measurements

are subject to certain errors, the measured angle rarely ever coin-

ciding with the theoretical angle.

But, as I shall show, there is indirect proof that the indices of

crystal faces are rational numbers. Since the time of Haiiy thou-

sands of crystals have been measured and among all these crystals,

which include both minerals and prepared compounds of the labo-

ratory, only axes of 2-fold, 3-fold, 4- fold, and 6-fold symmetry have

9 Philosophical Transactions of the Royal Society, A, Vol. 202, p. 476.

" One reason why I am led to believe that they are really referable to

rational, although not to simple, indices is the following: During the growth

of the crystal, one set of vicinal faces is being continually replaced by another

along certain zones ; . . . but the change is not gradual, neither are the sur-

faces curved ; one plane reflecting surface is replaced by another plane ; and

although the images may for a time be multiple and confused, sharply defined

images emerge successively by the substitution of one image for another

per saltum."
10

Loc. cit., p. 363, " Also kann das allgemeine Gesetz der rationalen Indices

keine'Bedeutung fur die Krystallographie haben."
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ever been found. Assuming that these are the only possible sym-

metry-axes it may be proved 11 that crystals consist of regularly ar-

ranged particles at small finite distances apart, the arrangement

about any particle being the same as about any other. In a regular

arrangement of particles of indefinite extent, there is an infinite

number of symmetry-axes, some of which are parallel to each other.

Let At and A2 be two parallel symmetry-axes with the minimum dis-

tance AXA2 between them. A revolution about A x brings A2 to

A , and a similar revolution about A 2 brings A x to A4 . By
hypothesis the distance A3A i can not be less than AXA2 . There-

fore the angles of revolution, A2A1AZ and A-^A^A^, can not be

less than 6o° and therefore no symmetry-axis greater than six is

possible. Axes of 2-, 3-, 4-, 5-, and 6-fold symmetry remain to be

considered. A revolution of 72 (± of 360 ) around A x and A2

brings two particles Az and A4 a smaller distance apart than the

original minimum distance A XA2 . If we take Az and A i as the

original particle a still smaller distance A5A6 would result and so on

ad infinitum. Revolutions of 6o°, 90°, 120 , and 180 are not con-

trary to the hypothesis of a minimum distance. Therefore only axes

of 2-, 3-, 4-, and 6-fold symmetry- are consistent with a regular

molecular structure. While the rationality of the indices may not

be subject to direct proof, the symmetry of crystals can be deter-

mined by measurement. The fact that only the types of symmetry

mentioned have been discovered makes it practically certain that

crystals are made up of regularly arranged particles of some kind.

Other facts point to the same conclusion.

Assuming homogeneity or regular arrangement of the particles

of crystals Barlow 12 has proved that only thirty-two crystal classes

or combinations of symmetry elements are possible. It is remark-

able that all but one of these classes, viz.. the trigonal bipyramidal

class (one plane of symmetry and one axis of 3-fold symmetry),

"Lewis, "A Treatise on Crystallography," pp. 136-137 (1899). Barlow,

Philosophical Magazine (6th series), Vol. i, pp. 1-36 (1001).
a Philosophical Magazine (6th series), Vol. 1, pp. 1-36 (1901). The

thirty-two possible crystal classes were also deduced by Hessel in 1830 and

independently by Gadolin in 1867. Both of these authors base their work
upon the law of rational indices but Barlow's work is based upon homogeneity

of structure.
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have been found either among minerals or prepared compounds.

Moreover, every crystal that has been carefully investigated can be

assigned to one of thirty-one out of the thirty-two possible crystal

classes.

Physicists in general assume the coarse-grainedness of matter. 13

It is only fair to assume that in crystals the molecules or particles

are arranged in a definite and regular manner. The most compre-

hensive definition of a crystal is the following: "A crystal is a

homogeneous solid, the physical properties of which are the same in

parallel directions but, in general, are different in non-parallel

directions."

It is necessary to assume a regular arrangement of particles in

order to explain many of the physical properties of crystals. On
account of the correlation between the geometrical and physical

(especially the optical) properties of crystals it is practically certain

that the crystal form is an outward expression of a regular internal

structure. A regular internal structure accounts at the same time

for the constancy of interfacial angles and for diversity in crystal

habit. It also seems impossible to explain cleavage in any other

way.

// crystals are made up of regularly arranged particles, 1 * the

centers of which are at small, finite distances apart, all crystal faces

necessarily have rational indices for the faces are due to the align-

ment of particles in parallel position but with the omission of par-

ticles in step-like arrangement. A whole number of particles is

always omitted.

The indices are not necessarily small numbers but may often be

large numbers. Even the highest indices ever assigned to crystal

faces such as the vicinal faces of adularia (500-527-0), (250-249-0),

and (200-157-0) are simple compared with the number of particles

or molecules in a crystal.

13
Riicker, Report British Association for the Advancement of Science,

1901, p. 12.

14 The size, shape, and nature of the particles are immaterial. It is also

immaterial whether they are contact as Haiiy believed or widely spaced as

modern physicists are inclined to believe. So stripped is the structure-theory

of all hypothesis that it becomes a mere geometrical abstraction. It is only

necessary to assume that crystals are made up of parts.
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The intimate connection between rational indices, molecular

structure, and symmetry-axes with periods of 2, 3, 4, and 6 can not

be denied. If one is true, it is pretty certain that the others are.

true. There is direct proof of only one of these facts, viz., sym-

metry-axes of the kinds mentioned. This is the empirical basis

upon which my argument rests. It is absolutely true that only axes

of 2-, 3-, 4-, and 6- fold symmetry have ever been found and it is,

very probable that these are the only ones that ever will be found.

Suppose crystals with an axis of 5-fold symmetry should be in-

cluded as possible. If five- fold axes are possible, axes of 7-, 8-, 9-,

10- fold, etc., would also be possible, for the minimum possible dis-

tance between two particles excludes axes with periods greater than

6 for the same reason that it excludes those with a period of 5.

Then instead of ^2 crystal classes with one gap to be filled, we

should have an indefinite number of crystal classes but with only

31 of them yet found in nature.

Even if we grant that the indices are rational numbers, crystal-

lography would still be very complicated for the number of possible

rational ratios is very large. In the ortho rhombic system, for ex-

ample, there are 1,037 possible forms with indices not over 10. Yet

for the mineral topaz, which leads all orthorhombic minerals in

the number of forms there are only about 125 known forms. For

all orthorhombic minerals taken together there are only about 386

known forms with indices not over 10. Of all known substances

calcite has the greatest number of crystal forms, about 325 well-

established ones with about 140 uncertain ones. Only about a half

(162) of the forms have indices greater than 10, u yet the possible

number of forms in the calcite class with indices not greater than 10

is 876.

Weneed an explanation that will reconcile the observed fact that

the indices are usually simple with the fact that they are occasion-

ally complex, the complexity, in general, increasing with the rarity.

Such an explanation is furnished by the structure-theory of

Bravais. 16 Bravais assumes that the centers of molecules occupy

the points of a space-lattice. Fourteen kinds of space-lattices, con-

15 That is, h, k. and / in the symbol hkil are not greater than 10.

""Etudes Cristallographiques," Paris (1866).
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stituting various styles of crystal architecture, are necessary to

account for the crystals of various systems.

The crystal faces of most frequent occurrence are, according to

Bravais, those planes in which the points of the space-lattice are

most closely packed. These are faces with simple indices as can be

seen from Fig. 3. Faces with complex or high indices are planes

with the points relatively far apart (Fig. 3). It is a well-known fact

100

Fig. 3. The relative frequency of occurrence of crystal faces.

that the same forms are not common for every crystal even of the

same system. The space-lattice is distinctive for every crystal ex-

cept those of the isometric system and even in this system there are

three kinds of space-lattice possible. The following statistics, com-

piled from Goldschidt's " Krystallographische Winkeltabellen," will

give an idea of the relative abundance of the various forms. Tak-

ing the (hko) zone for 206 orthorhombic minerals, thus eliminating

individual peculiarities, (010) occurs on 134, (100) on ill, (no) on

144, (120) on 66, (210) on 48, (130) on 43, (230) on 29, (320) on

22, (310) on 20, (150) on 17, (430) on 10, (340), (53°), and (410)

on 9 each, (540) on 8, (610) on 7, (560) and (350) on 6 each,

(160), (250), (520), and (10-9-0) on 5 each (650) and (750) on 4

each, (170), (710), and (740) on 3 each, (510) (970), (i-ii-o),

(i-i2-o),on 2 each, and many forms including (7-11-0), (10-7-0),

(i-i2-o), (16-1-0), (19-20-0), etc., on one each.
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Goldschmidt 17 attempts to explain the relative frequency of crys-

tal forms by a different method from that of Bravais. Assuming

(ioo) and (oio) as the primary faces in the zone [ioo:/i£o:oio]

secondary faces result by the addition of the indices. Thus adding

ioo and oio, index by index, we have as the first complication, no.

Adding ioo and no, also no and oio, we have 210 and 120 as

the second complication and so on. The relative frequencies of

crystal forms for the hko zone are, according to Goldschmidt's law

of complication, in the following order.

310 320 230 130

410 520 530 430 340 350 250 140

510 720 830 730 740 850 750 540 450 570 580 470 370 380 270 150

Although Goldschmidt's law of complication accounts in a gen-

eral way for the relative frequency of crystal forms it does not

fully explain the observed facts. According to Goldschmidt (210)

and (120) should be of equal frequency as should also (310),

(320), (230), and (130). Yet (120) occurs on 66 orthorhombic

minerals while (210) occurs on only 48. The form (130) occurs on

43 orthorhombic minerals while the other three forms mentioned

occur on only 29, 22, and 20 minerals respectively. Out of 206

combinations of anglesite 18 (120) occurs 34 times and (210) only

twice. The explanation of these apparent discrepancies is that in

the orthorhombic system the a-axis is shorter than the fe-axis and

consequently molecules are more closely packed along (120) than

along (210). Hence (120) is more frequent than (210). With

many orthorhombic crystals, for example cordierite, chalcocite,

chrysoberyl, columbite, and witherite (130) occurs to the exclusion

of (120J.

In the monoclinic system the a-axis is either shorter or longer

17
Zeitschrift fiir Krystallographie und Mineralogie, Vol. 28, pp. 1-35, 414-

451 (1897). Abstract by Moses, School of Mines Quarterly, Vol. 25, pp.

415-420 (1004).

"Hermann, Zeitschrift fiir Mineralogie, Vol. 39, p. 478 (1904).
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than the b-axis. Out of 59 monoclinic minerals with a less than

unity, (010) occurs on 56, but (100) on only 46 while (120) occurs

on 23, but (210) on only 13. Out of 64 monoclinic minerals with

a greater than unity, (100) occurs on 60, but (010) on only 43 while

(210) occurs on 16, but (120) on only 13. If a is shorter than b,

the molecules are more closely packed along (010) and (120) than

along (100) and (210), but if a is longer than b the reverse is true.

Out of 168 combinations of orthoclase (including microcline)

crystals given in Hintze's " Handbuch der Mineralogie," (010)

Fig. 4. The probable structure of orthoclase.

occurs on 133, but (100) on only 22. The form (130) occurs 70

times but (120) occurs only once! This remarkable case is ex-

plained by assuming the structure to be that of the monoclinic or

clinorhombic prism, one of the space-lattices of Bravais. It can be

seen from Fig. 4 that the molecules are more closely spaced along

(130) than along (120).

It is certainly true that the form-series differs for various crys-

tals, but according to the law of complication the form-series should

be alike for all crystals and all systems. 10

For those who are familiar with chemistry, the whole matter

of indices, rationality, crystal structure, and relative frequency of

crystal faces may be cleared up by considering the analogy between

the fundamental laws and theories of chemistry and those of crys-

tallography.

19 Goldschmidt (Joe. cit.) explains the differences in the form-series by

assuming outer disturbing influences. These undoubtedly have an effect but

certain discrepancies are more easily explained by the law of maximum
reticulate density.
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For the crystals of any one substance the angles between corre-

sponding faces are constant. This law is known as the law of

constancy of interfacial angles. It corresponds to the law of defi-

nite proportions in chemistry.

The proportions in which two elements combine determines the

atomic weight of the elements. In an analogous way the intercepts,

which are determined by certain constant interfacial angles, establish

the axial ratio which, like the atomic weight, is a constant.

Crystal measurement corresponds to quantitative analysis in

chemistry. Exact measurements establish the axial ratio of a crys-

tal just as exact analyses establish the atomic weight of an element.

Two chemical elements A and B unite not only to form the com-

pound AB but also the compounds AB2 , A. 2B3 , AZB, etc. This fact

is known as the law of multiple proportions. These proportions for

most chemical compounds are usually simple but in many com-

pounds, especially those containing silicon or carbon, they are often

far from simple. Among silicate minerals we have such compounds

as Mg-Al 12 Si 2 27 and H20 Mglt Al 8 Si 6O45 . Among organic com-

pounds we have C60H122 , C17 H23 X03 , C27 H46 14 , and many others

with fifty or more carbon atoms in the molecule. In spite of these

complex formula? all chemists accept the law of multiple propor-

tions as an established fact. Without it chemistry would scarcely

deserve to be called a science. The law of rational indices in

crystallography corresponds to the law of multiple proportions in

chemistry. The same difficulties are encountered in crystal meas-

urement as in quantitative analysis. That is, there are certain errors

which usually render it impossible to prove absolutely the law of

rational indices or the law of multiple proportions. 20 According to

Jaquet the formula of hemoglobin (of the dog) is C N»»-

S3 Fe0 21s . This formula can hardly be regarded as established. It

may be a little different but it is very probable that these elements

unite in definite proportions. This is exactly analogous to vicinal

faces such as (251 -250-250) observed on alum by Miers.

The law of multiple proportions was deduced by Dalton from

his atomic theory before there were accurate analyses to prove it,

30 Organic chemistry has an advantage over inorganic chemistry in that

the formulae may usually be determined by the method of formation.
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just as the law of rational indices was deduced by Haiiy from his

theory of crystal structure. If chemical compounds are made up

of atoms they must necessarily unite in definite proportions. This

it will be recalled is precisely analogous to the argument used for

proof of the rationality of the indices. If crystals are made up of

particles or molecules, the crystal faces necessarily have rational

indices.

Two or more given elements do not unite in all possible pro-

portions but in a comparatively few, usually simple, proportions

which we explain by the term valence. There are but two oxids of

mercury Hg2 0, and HgO which we explain by saying that the

valence of mercury is one and two. This is analogous to the limita-

tion imposed by the law of complication of Goldschmidt or the law

of maximum reticulate density of Bravais.

To complete the analogy between the laws and theories of crys-

tallography and chemistry let us consider the periodic law and its

analogue. Mendeleef, the Russian chemist, predicted the existence

of several chemical elements, scandium and gallium, which he called

ekaboron and eka-aluminum, before they were discovered. Not less

remarkable was the deduction by Hessel, a German mathematician,

of the thirty-two possible types of symmetry in crystals, assum-

ing 2-, 3-, 4-, and 6-fold symmetry-axes, in 1830, at a time when

only about half of them were known. Of the thirty-two possible

types of symmetry, only one remains to be found.

Summary.

Judging from various text-books and articles a difference of

opinion exists as to the exact meaning of the law of rational indices.

Some authors limit the indices to simple numbers while others

admit that occasionally the indices are large numbers. Unfortu-

nately this question can not be decided by direct measurement of the

angles on account of errors in measurement. As crystals possess

axes of only 2-, 3-, 4-, and 6-fold symmetry they must consist of

regularly arranged molecules, or particles of some sort, whatever

their nature may be. Crystal faces, then, necessarily have rational

indices. The indices are usually small numbers but may also be
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complex, the complexity in general increasing with the rarity of the

face. The structure theory of Bravais offers a satisfactory ex-

planation of the abundance of faces with simple indices and the

rarity of faces with complex indices. There is a remarkable analogy

between the fundamental laws of chemistry and crystallography.

Stanford University,

California,

Feb., 1912.
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